

DEEP-LEARNING-BASED AUDIO-VISUAL SPEECH ENHANCEMENT IN PRESENCE OF LOMBARD EFFECT

Daniel Michelsanti¹, Zheng-Hua Tan¹, Sigurdur Sigurdsson², Jesper Jensen^{1,2}

¹Dept. of Electronic Systems, Aalborg University, Denmark

²Oticon A/S, Denmark

{danmi,zt,jje}@es.aau.dk {ssig,jesj}@oticon.com

Motivation

➤ Speech enhancement: task of estimating the clean speech of a speaker immersed in an acoustically noisy environment (Fig. 1).

Fig. 1: Speech enhancement.

- ► Important in several applications:
 - Speech recognition.
 - Speaker verification.
 - Hearing aids.
- ► Lombard effect: Reflex occurring when speakers talk in a noisy environment.
- ► Current deep-learning-based systems do not take Lombard effect into account. They are trained with neutral (non-Lombard) speech utterances recorded under quiet conditions to which noise is artificially added.
- ► We study the effects that the Lombard reflex has on deep-learning-based audiovisual speech enhancement systems.

Experiments

- ► Pipeline shown in Fig. 2:
 - Architecture inspired by [1].
 - ➤ Single modality systems: one of the encoder is removed.
- Systems trained on the utterances from the Lombard GRID corpus [2], to which speech shaped noise is added at several signal to noise ratios (SNRs).
- Systems tested on speakers observed (seen speakers) during training to isolate the impact of Lombard effect from other factors.
- Models used in this study shown in Table 1.

	Training Material		
Modality	Non-Lombard Speech	Lombard Speech	
Vision	VO-NL	VO-L	
Audio	AO-NL	AO-L	
Audio-visual	AV-NL	AV-L	

Table 1: Models used in this study.

Training Targets and Objective Functions

	Direct Mapping (DM)	Indirect Mapping (IM)	Mask Approximation (MA)
Short Time Spectral Amplitude (STSA)	$J = a \sum_{k,l} \left(A_{k,l} - \widehat{A}_{k,l} \right)^2$	$J = a \sum_{k,l} (A_{k,l} - \widehat{M}_{k,l} R_{k,l})^2$	$J = a \sum_{k,l} \left(M_{k,l}^{IAM} - \widehat{M}_{k,l} \right)^2$
Log Spectral Amplitude (LSA)	$J = a \sum_{k,l} \left(\log(A_{k,l}) - \log(\widehat{A}_{k,l}) \right)^2$	$J = a \sum_{k,l} \left(\log(A_{k,l}) - \log(\widehat{M}_{k,l} R_{k,l}) \right)^2$	-
Mel-Scaled Spectral Amplitude (MSA)	$J = b \sum_{q,l} \left(\overline{A}_{q,l} - \widehat{\overline{A}}_{q,l} \right)^2$	$J = b \sum_{q,l} \left(\overline{A}_{q,l} - \widehat{\overline{M}}_{q,l} \overline{R}_{q,l} \right)^2$	-
Log Mel-Scaled Spectral Amplitude (LMSA)	$J = b \sum_{q,l} \left(\log(\overline{A}_{q,l}) - \log(\widehat{\overline{A}}_{q,l}) \right)^2$	$J = b \sum_{q,l} \left(\log(\overline{A}_{q,l}) - \log(\widehat{\overline{M}}_{q,l} \overline{R}_{q,l}) \right)^{2}$	-
Phase Sensitive Spectral Amplitude (PSSA)	$J = a \sum_{k,l} \left(A_{k,l} \cos(\theta_{k,l}) - \widehat{A}_{k,l} \right)^2$	$J = a \sum_{k,l} \left(A_{k,l} \cos(\theta_{k,l}) - \widehat{M}_{k,l} R_{k,l} \right)^2$	$J = a \sum_{k,l} \left(M_{k,l}^{PSM} - \widehat{M}_{k,l} \right)^2$

Table 2: Taxonomy proposed in [3]. Here: $a = \frac{1}{TF}$, $b = \frac{1}{TQ}$, $M_{k,l}^{IAM} = \frac{A_{k,l}}{R_{k,l}}$ and $M_{k,l}^{PSM} = \frac{A_{k,l}}{R_{k,l}} \cos(\theta_{k,l})$. In this study, the highlighted objective function is used.

Pipeline for Audio-Visual Speech Enhancement

Fig. 2: Pipeline for the audio-visual speech enhancement approach used in this study.

Results

Fig. 3: ESTOI and PESQ results for the various approaches.

Fig. 4: Listening tests results using audio-visual stimuli to evaluate speech intelligibility and speech quality.

References

- [1] A. Gabbay et al., "Visual speech enhancement," *Proc. of Interspeech*, 2018.
- [2] N. Alghamdi et al., "A corpus of audiovisual Lombard speech with frontal and profile views," *The Journal of the Acoustical Society of America*, 2018.
- [3] D. Michelsanti et al., "On training targets and objective functions for deep-learning-based audio-visual speech enhancement," *Proc. of ICASSP*, 2019.

Conclusion

- ► The Lombard effect affects the performance of speech enhancement systems.
- ► The impact of visual differences between Lombard and non-Lombard speech on estimated speech intelligibility is higher than the impact of acoustic differences.
- A 5 dB benefit can be observed for the estimated speech quality at low SNRs when the mismatch between neutral and Lombard speech is taken into account in the design of audio-visual systems.
- Listening tests using audio-visual stimuli show that:
 - ► Signals processed with L systems tend to have higher intelligibility if compared to the other processing conditions.
 - ► The speech quality of the L systems is statistically significantly better than the one of the NL systems at -5 dB SNR.