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Motivation Training Targets and Objective Functions
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Table 2: Taxonomy proposed in [3]. Here: a= 5=, b= 55, My = % and M 7" = % cos(fk,)- In this study,

the highlighted objective function is used.

Pipeline for Audio-Visual Speech Enhancement

Fig. 1: Speech enhancement.
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Table 1: Models used in this study. Fig. 4: Listening tests results using audio-visual stimuli to evaluate speech intelligibility and speech quality.
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